Relativity versus Quantum Mechanics: The Battle for the Universe - Part 2

By Science and Nonduality

Large Hadron Collider - Rex Features

<< Part 1
by Corey S. Powell

A bigger vision

If you are looking for a totally different direction, Smolin of the Perimeter Institute is your man. Where Hogan goes gently against the grain, Smolin is a full-on dissenter: “There’s a thing that Richard Feynman told me when I was a graduate student. He said, approximately, ‘If all your colleagues have tried to demonstrate that something’s true and failed, it might be because that thing is not true.’ Well, string theory has been going for 40 or 50 years without definitive progress.”

And that is just the start of a broader critique. Smolin thinks the small-scale approach to physics is inherently incomplete. Current versions of quantum field theory do a fine job explaining how individual particles or small systems of particles behave, but they fail to take into account what is needed to have a sensible theory of the cosmos as a whole. They don’t explain why reality is like this, and not like something else. In Smolin’s terms, quantum mechanics is merely “a theory of subsystems of the universe”.

A more fruitful path forward, he suggests, is to consider the universe as a single enormous system, and to build a new kind of theory that can apply to the whole thing. And we already have a theory that provides a framework for that approach: general relativity. Unlike the quantum framework, general relativity allows no place for an outside observer or external clock, because there is no “outside”. Instead, all of reality is described in terms of relationships between objects and between different regions of space. Even something as basic as inertia (the resistance of your car to move until forced to by the engine, and its tendency to keep moving after you take your foot off the accelerator) can be thought of as connected to the gravitational field of every other particle in the universe.

That last statement is strange enough that it’s worth pausing for a moment to consider it more closely. Consider a thought problem, closely related to the one that originally led Einstein to this idea in 1907. What if the universe were entirely empty except for two astronauts? One of them is spinning, the other is stationary. The spinning one feels dizzy, doing cartwheels in space. But which one of the two is spinning? From either astronaut’s perspective, the other is the one spinning. Without any external reference, Einstein argued, there is no way to say which one is correct, and no reason why one should feel an effect different from what the other experiences.

The distinction between the two astronauts makes sense only when you reintroduce the rest of the universe. In the classic interpretation of general relativity, then, inertia exists only because you can measure it against the entire cosmic gravitational field. What holds true in that thought problem holds true for every object in the real world: the behaviour of each part is inextricably related to that of every other part. If you’ve ever felt as if you wanted to be a part of something big, well, this is the right kind of physics for you. It is also, Smolin thinks, a promising way to obtain bigger answers about how nature really works, across all scales.

“General relativity is not a description of subsystems. It is a description of the whole universe as a closed system,” he says. When physicists are trying to resolve the clash between relativity and quantum mechanics, therefore, it seems like a smart strategy for them to follow Einstein’s lead and go as big as they possibly can.

Smolin is keenly aware that he is pushing against the prevailing devotion to small-scale, quantum-style thinking. “I don’t mean to stir things up; it just kind of happens that way. My role is to think clearly about these difficult issues, put my conclusions out there, and let the dust settle,” he says genially. “I hope people will engage with the arguments, but I really hope that the arguments lead to testable predictions.”

At first blush, Smolin’s ideas sound like a formidable starting point for concrete experimentation. Much as all of the parts of the universe are linked across space, they may also be linked across time, he suggests. His arguments led him to hypothesise that the laws of physics evolve over the history of the universe. Over the years, he has developed two detailed proposals for how this might happen. His theory of cosmological natural selection, which he hammered out in the 1990s, envisions black holes as cosmic eggs that hatch new universes. More recently, he has developed a provocative hypothesis about the emergence of the laws of quantum mechanics, called the principle of precedence – and this one seems much more readily put to the test.

Smolin’s principle of precedence arises as an answer to the question of why physical phenomena are reproducible. If you perform an experiment that has been performed before, you expect the outcome will be the same as in the past. (Strike a match and it bursts into flame; strike another match the same way and… you get the idea.) Reproducibility is such a familiar part of life that we typically don’t even think about it. We simply attribute consistent outcomes to the action of a natural “law” that acts the same way at all times. Smolin hypothesises that those laws actually may emerge over time, as quantum systems copy the behaviour of similar systems in the past.

One possible way to catch emergence in the act is by running an experiment that has never been done before, so there is no past version (that is, no precedent) for it to copy. Such an experiment might involve the creation of a highly complex quantum system, containing many components that exist in a novel entangled state. If the principle of precedence is correct, the initial response of the system will be essentially random. As the experiment is repeated, however, precedence builds up and the response should become predictable… in theory. “A system by which the universe is building up precedent would be hard to distinguish from the noises of experimental practice,” Smolin concedes, “but it’s not impossible.”

Although precedence can play out at the atomic scale, its influence would be system-wide, cosmic. It ties back to Smolin’s idea that small-scale, reductionist thinking seems like the wrong way to solve the big puzzles. Getting the two classes of physics theories to work together, though important, is not enough, either. What he wants to know – what we all want to know – is why the universe is the way it is. Why does time move forward and not backward? How did we end up here, with these laws and this universe, not some others?

The present lack of any meaningful answer to those questions reveals “something deeply wrong with our understanding of quantum field theory”, Smolin says. Like Hogan, he is less concerned about the outcome of any one experiment than he is with the larger programme of seeking fundamental truths. For Smolin, that means being able to tell a complete, coherent story about the universe; it means being able to predict experiments, but also to explain the unique properties that made atoms, planets, rainbows and people. Here again he draws inspiration from Einstein.

“The lesson of general relativity, again and again, is the triumph of relationalism,” Smolin says. The most likely way to get the big answers is to engage with the universe as a whole.

And the winner is?

If you wanted to pick a referee in the big-small debate, you could hardly do better than Sean Carroll, an expert in cosmology, field theory and gravitational physics at Caltech. He knows his way around relativity, he knows his way around quantum mechanics, and he has a healthy sense of the absurd: he calls his personal blog Preposterous Universe. Right off the bat, Carroll awards most of the points to the quantum side. “Most of us in this game believe that quantum mechanics is much more fundamental than general relativity is,” he says. That has been the prevailing view ever since the 1920s, when Einstein tried and repeatedly failed to find flaws in the counterintuitive predictions of quantum theory. The recent Dutch experiment demonstrating an instantaneous quantum connection between two widely separated particles – the kind of event that Einstein derided as “spooky action at a distance” – only underscores the strength of the evidence.

Taking a larger view, the real issue is not general relativity versus quantum field theory, Carroll explains, but classical dynamics versus quantum dynamics. Relativity, despite its perceived strangeness, is classical in how it regards cause and effect; quantum mechanics most definitely is not. Einstein was optimistic that some deeper discoveries would uncover a classical, deterministic reality hiding beneath quantum mechanics, but no such order has yet been found. The demonstrated reality of spooky action at a distance argues that such order does not exist.

“If anything, people underappreciate the extent to which quantum mechanics just completely throws away our notions of space and locality [the notion that a physical event can affect only its immediate surroundings]. Those things simply are not there in quantum mechanics,” Carroll says. They may be large-scale impressions that emerge from very different small-scale phenomena, like Hogan’s argument about 3D reality emerging from 2D quantum units of space.

Despite that seeming endorsement, Carroll regards Hogan’s holometer as a long shot, though he admits it is removed from his area of research. At the other end, he doesn’t think much of Smolin’s efforts to start with space as a fundamental thing; he believes the notion is as absurd as trying to argue that air is more fundamental than atoms. As for what kind of quantum system might take physics to the next level, Carroll remains broadly optimistic about string theory, which he says “seems to be a very natural extension of quantum field theory”. In all these ways, he is true to the mainstream, quantum-based thinking in modern physics.

Yet Carroll’s ruling, while almost entirely pro-quantum, is not purely an endorsement of small-scale thinking. There are still huge gaps in what quantum theory can explain. “Our inability to figure out the correct version of quantum mechanics is embarrassing,” he says. “And our current way of thinking about quantum mechanics is simply a complete failure when you try to think about cosmology or the whole universe. We don’t even know what time is.” Both Hogan and Smolin endorse this sentiment, although they disagree about what to do in response. Carroll favours a bottom-up explanation in which time emerges from small-scale quantum interactions, but declares himself “entirely agnostic” about Smolin’s competing suggestion that time is more universal and fundamental. In the case of time, then, the jury is still out.

No matter how the theories shake out, the large scale is inescapably important, because it is the world we inhabit and observe. In essence, the universe as a whole is the answer, and the challenge to physicists is to find ways to make it pop out of their equations. Even if Hogan is right, his space-chunks have to average out to the smooth reality we experience every day. Even if Smolin is wrong, there is an entire cosmos out there with unique properties that need to be explained – something that, for now at least, quantum physics alone cannot do.

By pushing at the bounds of understanding, Hogan and Smolin are helping the field of physics make that connection. They are nudging it toward reconciliation not just between quantum mechanics and general relativity, but between idea and perception. The next great theory of physics will undoubtedly lead to beautiful new mathematics and unimaginable new technologies. But the best thing it can do is create deeper meaning that connects back to us, the observers, who get to define ourselves as the fundamental scale of the universe.

This essay originally appeared in issue 29 of Nautilus. It was then published on the Guardian.

Continue reading

Related Content


Holotropic States of Consciousness: Technologies of the Sacred

Dec 18, 2018

A pre-recorded 4-part Video Series with Stanislav Grof


Oct 22–26, 2014
Hayes Mansion, San Jose California


Oct 21–25, 2015
Hayes Mansion, San Jose California

Vastness of Life, with Eric Baret

Jun 28–30, 2019
Delight Yoga, Amsterdam


Oct 23–27, 2019
Hayes Mansion, San Jose California